

Technical Note

ROHM Electronic Component

Regulators ICs for Digital Cameras and Camcorders System Switching Regulator ICs with Built-in FET (10V)

BD9739KN, BD9740KN

No.10036EAT07

Description

The 7-channel switching regulators include built-in FETs, and are designed for use in digital still cameras. They feature built-in power FETs and soft start functionality, reducing the number of external components.

Features

- 1) Wide supply voltage range: 1.5 V to 10 V
- 2) High-precision reference voltage: ± 1%
- 3) Built-in shutdown circuit for overload (timer-latch type)
- 4) Oscillator frequency is user-adjustable
- 5) Built-in thermal shutdown circuit
- 6) Standby mode current: 0 μA
- 7) Built-in load switch circuit
- 8) Selectable step-up/step-down mode
- 9) Supports inverting circuit for negative output voltage
- 10) Support a constant-current LED drive for backlight applications
- 11) Includes multiple synchronous rectification channels

Applications

Digital still cameras, portable DVD players, and digital video cameras.

Parameter	BD9739KN	BD9740KN
Input voltage	1.5 V to 10 V	1.5 V to 10 V
Reference voltage precision	1 V ± 1%	1 V ± 1%
Operating frequency range	100 k to 1.2 MHz	100 k to 1.2 MHz
Step-up	3CH	2CH
Step-down	2CH	1CH
Step-up/step-down switch regulator	1CH	3CH
Inverting	1CH	1CH
Built-in FET	3CH	1CH
Synchronous rectification	3CH	2CH
Load switching	3CH	—
Operating temperature range	-20°C to +85°C	-20°C to +85°C
Package	UQFN64	UQFN48

Product lineup

•Absolute maximum ratings

Parameter	Symbol	Rat	ings	Unit
Falameter	Symbol	BD9739KN	BD9740KN	Unit
	VBAT,VCC,PVCC	-0.3 to +12	-0.3 to +12	V
	PVCCH,PVCCL	-0.3 to +15	-0.3 to +15	V
	DRAIN*H, DRAIN*L	-0.3 to +12	-0.3 to +12	V
Maximum supply voltage	OUT1B	-0.3 to +20	-0.3 to +20	V
	OUT2B	-0.3 to +17	—	V
	SWOUT1,4,PGIN1,PG2,3	-0.3 to +12	—	V
	SWIN*	-0.3 to +20	—	V
		UQFN64	UQFN48	
Power dissipation	Pd	550 ^{*1-2}	500 ^{*1-3}	mW
		1000 *2-2	760 ^{*2-3}	
Operating temperature range	Topr	-25~	~ +85	°C
Storage temperature range	Tstg	-55~	+125	°C
Junction temperature	T _{jmax}	+1	25	°C

*1: IC without heat sink operation. Reduce by 5.5 mW/°C (1-2), or 5.0 mW/°C (1-3) when Ta \geq 25°C. *2: When mounted on a PCB (70 mm \times 70 mm \times 1.6 mm (thickness), glass epoxy). Reduced by 10.0 mW/°C (2-2), or 7.6 mW/°C (2-3), when Ta \geq 25°C.

Recommended operating ranges

Baramatar	Symbol	Rat	ings	Unit
Parameter	Symbol	BD9739KN	BD9740KN	Unit
	VBAT	1.5 to 10	1.5 to 10	V
Supply voltage	VCC, PVCC	1.5 to 10	2.8 to 10	V
	PVCCL, PVCCH	4.0 to 14	4.0 to 14	V

Parameter	Symbol		Ratings	Ratings		Conditions
	Symbol	Min.	Тур.	Max.	Unit	Conditions
[Oscillator]						
Oscillating frequency	f _{OSC}	0.1	—	1.2	MHz	
[Driver block]						
DRAIN pin input voltage	V _{DRAIN}		—	10	V	
N-channel FET output current (step-down)	I _{OFET1}		—	700	mA	
N-channel FET output current (step-up)	I _{OFET2}	—	—	300	mA	
LED channel output current	I _{OLED}		—	40	mA	
Driver output current	I _{OUT}		—	30	mA	External FET drive circuit
Driver peak current	I _{PEAK}		—	200	mA	External FET drive circuit
Startup NPN TR sink current	I _{NPNSINK}		_	500	mA	
[Positive/negative regulators]						
SWOUT1 pin sink current	I _{SWOUT1}	_	_	10	mA	
PGOUT1 pin source current	I _{PGOUT1}	_	_	100	mA	
PG23 pin sink current	I _{PG23}	_		1	mA	
SWOUT4 pin source current	I _{SWOUT4}		_	50	mA	(BD9739KN)
SWOUT6 pin source current	I _{SWOUT6}		—	50	mA	
SWOUT7 pin source current	I _{SWOUT7}		—	50	mA	

Electrical characteristics

(Unless otherwise specified, Ta = 25°C, VBAT = 3 V, VCC	= 5 V, RT = 11 k Ω , CT = 180 pF, STB1 to STB7 = 3 V)
	e 1,111 1111, e 1 100 p 1, e 1 2 1 10 e 1 2 1

	25 C, VDAI	= 3 v, vcc	- 5 V, IXI -	· II KS2, OI -	- 100 p	1, 3101 (0.3107 - 3.8)
Parameter	Symbol	Min.	Limits Typ.	Max.	Unit	Conditions
[Reference voltage, reference vol	Itage for inv	/erting]			1	
Output voltage	V _{REF2}	0.99	1.0	1.01	V	
Line regulation	DVLI	—	4.0	12.5	mV	VCC = 3.0 V to 9.5 V
Load regulation	DVLO	_	1.0	7.5	mV	IREF = 10 µA to 100 µA
Output current when shorted	los	0.2	1	_	mA	VREF = 0 V
[Internal regulator]		1				
Output voltage REGA	V _{REGA}	2.4	2.5	2.6	V	IREG = 1 mA
[Under voltage lockout circuit]	112071	I				
Detection threshold voltage 1	V _{STD1}	3.45	3.6	3.75	V	PVCCL monitor
Hysteresis width 1	ΔV_{ST1}	_	300	_	mV	
Detection threshold voltage 2	V _{STD2}	2.3	2.4	2.5	V	VCC monitor
Hysteresis width 2	ΔV_{ST2}		200		mV	
Detection threshold voltage 3	V _{STD3}	_	2.0	_	V	VREGA monitor
Hysteresis width 3	ΔV _{ST3}		50		mV	
[Startup circuit block]	Δ v S13		50		IIIV	
	f	50	120	220		
Oscillating frequency	f _{START}	50	120	220	kHz V	V/PAT nin manitar
Operation start VBAT voltage	V _{ST1}	1.5		-		VBAT pin monitor
Soft start charge current	I _{SS1}	1.1	2.2	3.3	μA	VSS1 = 0 V
[Short protection circuit]			• -		• •	
Timer threshold voltage	V _{TC}	2.1	2.2	2.3	V	FB pin monitor
SCP pin source current	I _{SCP}	0.5	1.0	1.5	μA	VSCP = 0.1 V
	1304	2	4	6	μ. ι	(BD9740KN)
SCP pin detection voltage	V _{TSC}	0.45	0.50	0.55	V	
Ser pin detection voltage		0.9	1.0	1.1	v	(BD9740KN)
SCP pin standby voltage	V _{SSC}	—	22	170	mV	
[Triangular waveform oscillator]	÷					
Oscillating frequency	f _{OSC1}	450	500	550	kHz	RT = 11 kΩ, CT = 180 pF
Frequency stability	Df	_	0.3	2	%	VCC = 3.0 V to 9.5 V
RT pin voltage	V _{RT}	0.78	1.00	1.22	V	
[Soft start 23 block] (BD9738KN,					I	
Soft start charge current	I _{SS23}	5	10	15	μA	VSS23 = 0 V
[Error amp]	13323	U	10	10	μ/ (10020 01
Low-level output voltage	V _{OL}	_	1.3	_	V	INV = 2 V
High-level output voltage	V _{OL}	V _{REGA} - 0.3	-	_	V	INV = 0 V
Output sink current		36	72	_		FB = 1.7 V, VINV = 1.1 V
					μΑ	
Output source current	I ₀₀	36	72	-	μA	FB = 1.7 V, VINV = 0.9 V
DTC pin upper resistance	RDTCU	20	30	40	kΩ	(BD9740KN)
DTC pin lower resistance	RDTCD	65	95	125	kΩ	(BD9740KN)
NON pin input range	I _{RES}	-0.3	-	1.5	V	
Non-inverted pin reference voltage	e V _{NON7}	—	0.2	—	V	
[PWM comparator]		т			r	
Input threshold voltage	V _{T0}	—	1.49	—	V	0% duty
	V _{T100}	—	1.95	—	V	100% duty
MAX DUTY	D _{MAX1}	77	85	93	%	VINV = 0.9 V, VSCP = 0 V
MAX DUTY (step-up operation)	D _{MAX2}	77	85	93	%	VINV = 0.9 V, VSCP, UDSEL = 0 V
[Output circuit]	I	I		1	1	
High-level output voltage	V _{SATH}	V _{CC} -1.6	V _{CC} -0.8	_	V	IO = 30 mA
Low-level output voltage	VSATH VSATL	-	0.8	1.6	V	IO = -30 mA
High-side N-channel FET	▼ SAIL	_	270	500	v	PVCCH = 5 V(IO = 200 mA
nign-side N-channel FET	RONH	<u> </u>	300	500	mΩ	(BD9740KN)
Low-side N-channel FET	RONL	-	270	500	mΩ	PVCCL = 5 V(IO = 200 mA
on resistance		_	300	500		(BD9740KN)
CH7 N-channel FET on	R _{ONL7}		0.7	1.4	Ω	PVCCL = 5 V(IO = 50 mA)
resistance						· · · · · · · · · · · · · · · · · · ·
[Step-up/step-down selector]	14	1/		N /	N /	
UDSEL pin Step-down control voltage Step-up	VUDDO	V _{CC} ×0.7	—	V_{CC} $V_{CC} \times 0.3$	V V	

Se Speenie	Ju, 1a – 25		- 3 V, VOO	•	11 K 32 , O 1	- 100 h	F, SIB1 to SIB7 = 3 V)	
Parameter		Symbol			l Init	Conditions		
lameter		Symbol	Min.	Тур.	Max.	Onit	Conditions	
tching bloo	ck] (BD973	9KN)						
Output v	oltage	V _{SAT}	—	0.1	0.3	V	IO = 1 mA	
Leak cur	rent	I _{LEAK}	—	0	5	μA	STB = 0 V	
Output v	oltage	V _{SAT}	—	0.1	0.3	V	IO = 100 μA	
Leak cur	rent	I _{LEAK}	—	0	5	μA	STB = 0 V	
Output v	oltage	V_{SAT}	V_{SWIN6} - 0.3	V _{SWIN6} - 0.1	_	V	IO = 20 mA VSWIN = 5 V	
Leak cur	rent	I _{LEAK}	—	0	5	μA	STB = 0 V	
Output v	oltage	V _{SAT}	V _{SWIN7} - 0.3	V _{SWIN7} - 0.1	_	V	IO = 10 mA VSWIN = 10 V	
Leak cur	rent	I _{LEAK}	—	0	5	μA	STB = 0 V	
k] (BD974	0KN)							
Soft start time of CH4		T _{SS1}	1.8	3.6	6.0	mse c	VCC = PVCC = 5V, PVCCH = 5.0V STB 0→3 V	
Soft start time of CH2, 3		T _{SS2}	1.8	3.6	6.0	mse c	VCC = PVCC = 5V, STB = 3 V INV4 = 0→1.2 V	
t start d voltage a	at start	V_{PG4}	0.72	0.80	0.88	V	VCC = PVCC = 5 V PVCCH = 5.0 V	
7]				1 1				
	ON	V _{STBH}	2.0	_	11	V	STB	
ol voltage	OFF		-0.3	—	0.3	V		
own resist	ance	R _{STB}	250	400	700	kΩ	STB	
t]								
Standby current 1 (VBAT pin sink current)		I _{STB1}	_	—	5	μA	STB1 to STB7 = 0 V	
Standby current 2 (VCC, PVCC pin sink current)		I _{STB2}	_	_	5	μA	STB1 to STB7 = 0 V	
Circuit current at startup (VBAT pin sink current)		I _{ST}	_	30	100	mA	CT = 1.7 V VCC = 0 V	
1 (current)		I _{CC1}	_	100	300	μA	CT = 1.7 V	
2 pin sink cu	rrent)	I _{CC2}	_	5	15	mA	CT = 1.7 V INV = 2.5 V	
	rameter tching bloc Output v Leak cur Output v Leak cur Support Curput v Leak cur Support Output v Support Output v Support	rameter ramete	rameter Symbol itching block] (BD9739KN) Output voltage V_{SAT} Leak current ILEAK Nof CH2, 3 T_{SS2} e start V_{PG4} 7] V_{PG4} of CH2, 3 V_{STBH} of voltage ON V_{STBH} ol voltage ON V_{STB1} our resistance R_{STB} R_{STB} nt 1 current) I_{ST}	rameter Symbol Min. Itching block] (BD9739KN) Output voltage V_{SAT} - Leak current ILEAK - Output voltage V_{SAT} - Output voltage V_{SAT} - - - - Output voltage V_{SAT} - - - - Output voltage V_{SAT} - -	LimitsLimitsMin. Typ.LimitsMin. Typ.Output voltageV_SAT-0.1Leak currentILEAK-0Output voltageV_SAT-0.1Leak currentILEAK-0Output voltageVSATVSWIN6 - 0.3VSWIN6 - 0.1Leak currentILEAK-0Output voltageVSATVSWIN6 - 0.3VSWIN7 - 0.1Leak currentILEAK-0Output voltageVSATVSWIN7 - 0.3VSWIN7 - 0.1Leak currentILEAK-0Output voltageVSATVSWIN7 - 0.3VSWIN7 - 0.1Leak currentILEAK-0K] (BD9740KN)-0-of CH2, 3TSS11.83.6of CH2, 3TSS21.83.6cistartVPG40.720.80of CH2, 3TSS21.83.6cistartVPG40.720.80of CH2, 3OFFVSTBH2.0of CH2, 3OFFVSTBL-0.3of CH2, 3OFFVSTBL-0.3of CH2, 3Istart1-of CH2, 3Istartof CH2, 3OFFVSTBL-0.3of CH2, 3Istartof current)Istartof startIstartIstart-of	Image: SymbolLimitsMin. Typ. Max.tching block] (BD9739KN)Output voltage V_{SAT} -0.10.3Leak current I_{LEAK} -05Output voltage V_{SAT} -0.10.3Leak current I_{LEAK} -05Output voltage V_{SAT} $V_{SWIN6} - 0.3$ $V_{SWIN6} - 0.1$ -Leak current I_{LEAK} -05Output voltage V_{SAT} $V_{SWIN7} - 0.3$ $V_{SWIN7} - 0.1$ -Leak current I_{LEAK} -05Output voltage V_{SAT} $V_{SWIN7} - 0.3$ $V_{SWIN7} - 0.1$ -Leak current I_{LEAK} -05Output voltage V_{SAT} $V_{SWIN7} - 0.3$ $V_{SWIN7} - 0.1$ -Leak current I_{LEAK} -05Output voltage V_{SAT} $V_{SMIN7} - 0.3$ $V_{SWIN7} - 0.1$ -Leak current I_{LEAK} -05Output voltage at start V_{PG4} 0.72 0.80 0.88 T_{J} T_{SS2} 1.8 3.6 6.0 of CH2, 3 T_{SS1} 1.8 3.6 6.0 output voltage at start D voltage ON V_{STBH} 2.0 -11 OFF V_{STB1} -0.3 - 0.3 OST I_{STB2} 5ot	LimitsUnitMin. Typ. Max.UnitMin. Typ. Max.UnitOutput voltage V_{SAT} -0.10.3VOutput voltage V_{SAT} V_{SWIN6} -0.3 V_{SWIN6} -0.1-VLeak current I_{LEAK} -05 μA Output voltage V_{SAT} V_{SWIN7} -0.3 V_{SWIN7} -0.1-VLeak current I_{LEAK} -05 μA Output voltage V_{SAT} V_{SWIN7} -0.3 V_{SWIN7} -0.1-VLeak current I_{LEAK} -05 μA Output voltage V_{SAT} V_{SWIN7} -0.3 V_{SWIN7} -0.1-VLeak current I_{LEAK} -05 μA Output voltage V_{SAT} V_{SWIN7} -0.3 V_{SWIN7} -0.1-VLeak current I_{LEAK} -05 μA of CH4 T_{SS1} 1.8 3.6 6.0 mse of CH2 $0.$	

(Unless otherwise specified, Ta = 25°C, VBAT = 3 V, VCC = 5 V, RT = 11 kΩ, CT = 180 pF, STB1 to STB7 = 3 V)

Note: This IC is not designed to be radiation-resistant.

•PVCCH and PVCCL input voltages

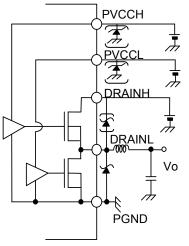


Fig. 1 Synchronous Rectification Channel with Built-In FET • Synchronous rectification channels with built-in FETs include, N-channel FETs for both the high-side and low-side configuration. The driver block's power source is supplied to the PVCCL pin for the low-side and the PVCCH pin for the high-side. (For the BD9740KN, both sides are supplied to the PVCCH pin.) In order to turn the FET on, a potential of at least 4 V must be supplied to the PVCCL pin, and a potential of at least, DRAINH pin voltage + 4 V, must be supplied to the PVCCH pin.

Note:

- The breakdown voltage for the PVCCL and PVCCH pins is 15 V. For applications that with voltages exceeding 15 V, add a zener diode, or other components, to provide overvoltage protection.
- Shorting the DRAINH pin with the ground, while a charge remains in the output capacitor, may cause unexpected current flow, resulting in damage to the IC. Add an external protective diode for applications where this possibility exists.

Block diagram and application circuit (BD9739KN)

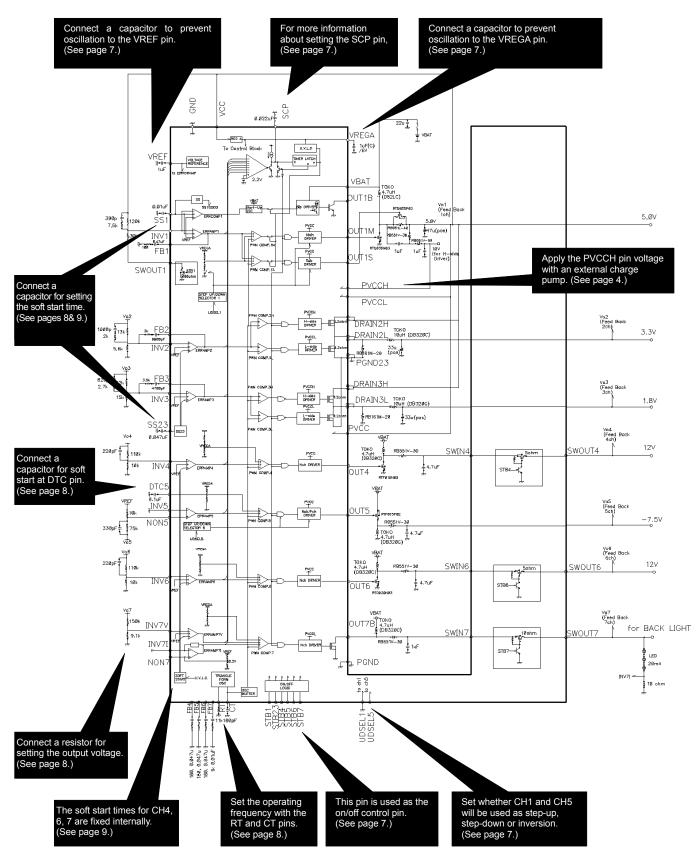


Fig. 2 BD9739KN Application Circuit

Block diagram and application circuit (2) BD9740KN

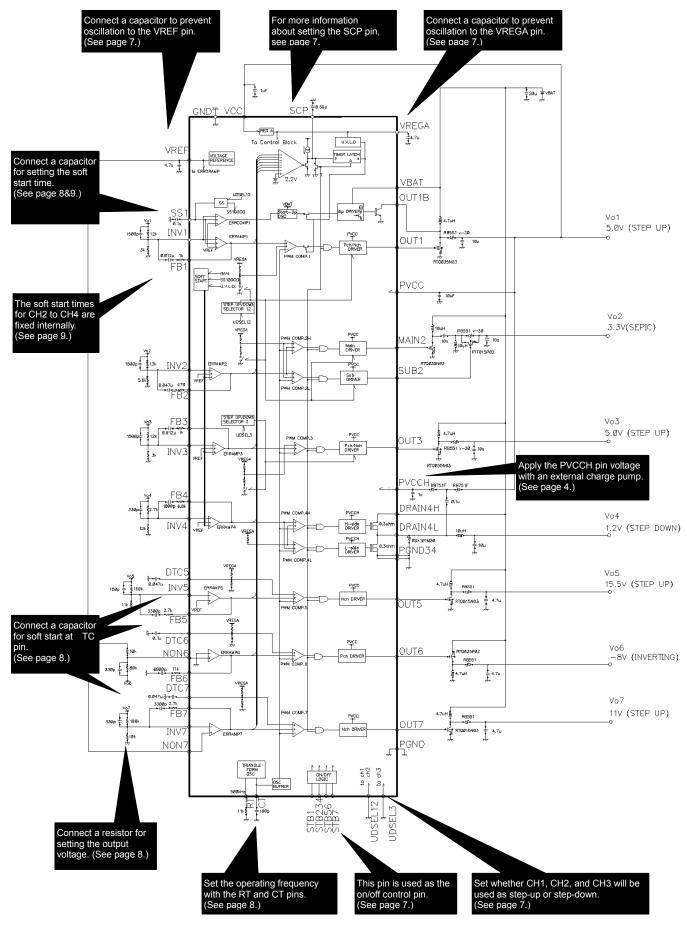


Fig. 3 BD9740KN Application Circuit

BD9739KN Pin No.

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
61	VBAT	60	OUT1B	44,36	NON5,7
29	VCC	4,5,12,13	DRAIN2,3H	28	SS1
54	PVCC	6,7,10,11	DRAIN2,3L	25	SS23
14	PVCCH	55	OUT1M	34	RT
59	PVCCL	56	OUT1S	33	СТ
8,9,57	PGND23,PGND	35	VREF	32	SCP
42	GND	43	DTC 5	1,64	UDSEL1,5
30	VREGA	26,24,21,47,46,41,39	FB 1~7	15,16,17,18,19,20	STB 1,23,4,5,6,7
51,52,53	OUT4,5,6	27,23,22,48,45,40	INV 1~6	50,2,62	SWIN4,6,7
58	OUT7B	37,38	INV7I,INV7V	31,49,3,63	SWOUT 1,4,6,7

BD9740KN Pin No.

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
4	VBAT	44	MAIN2	30,37	NON6,NON7
21	VCC	43	SUB2	17	SS1
46	PVCC	5	OUT1B	23	RT
10	PVCCH	9	DRAIN4H	24	СТ
42	PGND	8	DRAIN4L	25	SCP
6,7	PGND4	20	VREF	1	UDSEL12
31	GND	3,38,39	DTC 5~7	2	UDSEL3
22	VREGA	16,18,27,28,32,35,36	FB 1~7	11,12,13,14	STB1,234,56,7
40,41,45,47,48	OUT1,3,5,6,7	15,19,26,29,33,34	INV 1~5,7		

Block diagram explanation and setting peripheral IC components

1. Voltage reference (VREF)

VREF is the reference voltage source of 1.0V output voltage.

Connect a capacitor to prevent oscillation. Set the capacitance from 1.0 µF to 10 µF.

2. REGA

REGA and REGD are regulators with output voltages of 2.5 V. REGA is used as the power supply for the IC's internal blocks. Connect a capacitor to prevent oscillation. Set the capacitance from 4.7 μ to 10 μ F.

3. UDSEL

To enable step-up mode, connect VCC to the UDSEL pin. To enable step-up mode connect 0V to the UDSEL pin. When using the startup circuit, set the pin to step-up mode. Because the pin uses COMS inverter input, you must connect the pin to either GND or VCC in order to prevent undefined input.

4. On/off logic

The voltage applied to the STB pins can be controlled whether each channel is on or off.

CH1, CH4, and CH5 can be controlled independently, while CH2 and CH3 can be controlled simultaneously.

Applying a voltage of over 2 V turns on the corresponding channel(s), while leaving the pin open or applying 0 V turns off the corresponding channel(s).

Turning off all channels causes the IC to be in a standby state.

Each pin is connected to GND by a 400 k Ω pull-down resistor.

5. Setting the short protection detection time

The detection time can be set when the capacitor is connected to the SCP pin.

When the detection time is reached, the latch circuit operates, turning off the output for all channels.

To reset the latch circuit, turn all STB pins off, and then back on again.

Detection time (sec) = CSCP × VTSC / ISCP

(CSCP: capacitance; VTSC: SCP pin detection voltage, ISCP: SCP pin source current)

*Set the capacitor that is connected to the SCP pin from 0.001 μF to 2.2 μF

6. Setting the oscillating frequency

The oscillating frequency can be set by connecting the resistance value to the RT pin and connecting the capacitance value to the CT pin.

Oscillating frequency = VRT / ($CT \times RT$) (Unit: Hz)

*Set the resistance value, connected to the RT pin, from 4.7 k\Omega to 30 k\Omega

*Set the capacitance value, connected to the CT pin, from 100 pF to 10,000 pF.

(VRT: RT pin voltage; CT: OSC timing capacitance; RT: OSC timing resistance)

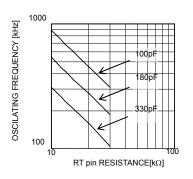
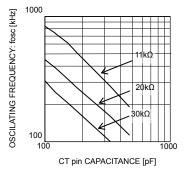
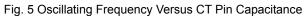




Fig. 4 Oscillating Frequency Versus RT Pin Resistance

7. Startup channel soft-start operation

The startup channel's soft start can be controlled by the capacitor connected to the SS1 pin. Times can be determined with the following equation:

Startup time (sec) = (VSS / ISS) \times CSS

(VSS = SS pin voltage [= 0.7 V], ISS = soft start charge current [= approximately 2.0 μA]; CSS = capacitor capacitance) Example: When CSS = 0.01 μF, startup time = 0.7 / (2.0 ×10-6) × (0.01 × 10-6) = 3.5 ms *Set the capacitance value, connected to the SS1 pin, from 0.001 μF to 2.2 μF.

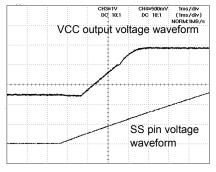
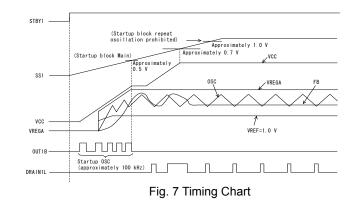



Fig. 6 Startup Channel Startup Waveform (Reference Data)

- 8. SWOUT1 pin (BD9734KN/BD9738KN/BD9739KN) To prevent current from flowing from VOUT1 to the feedback resistor, during sta
- To prevent current from flowing from VOUT1 to the feedback resistor, during standby operation, connect the ground side of CH1's feedback resistor to SWOUT1.
- 9. Soft start operation depending on SS pins (BD9739KN)

Soft start operation for CH2 and CH3 can be controlled by the capacitor connected to the SS23 pins. Times can be determined with the following equation:Startup time (sec) = (VSS / ISS) × CSS23 (VSS: SS pin voltage [= 1.0 V]; ISS: soft start charge current [= approximately 10 μ A]; CSS: capacitance) *Startup of CH2 begins when CH3 output reaches approximately 70%. *Set the capacitance value, connected to each SS23 pin, from 0.005 μ F to 1.0 μ F.

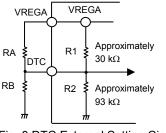


Fig. 8 DTC External Setting Circuit

10. Setting MAX DUTY

The DTC voltage is determined by the internal R1 and R2 resistance values. The DTC voltage can be changed by connecting resistance values that are from 1 to 2 digits smaller than the internal R1 (30 k Ω) and R2 (93 k Ω) resistors, to the RA and RB pins.

*The resistors connected to the RA and RB pins should be at least 5 k Ω . Avoid shorting the VREGA and DTC pins.

*When VCC falls to 2.8 V or below, a protection circuit will operate to limit MAX DUTY in order to prevent the IC from malfunctioning when VREGA (the internal circuit power supply) drops.

11. Soft start operation triggered by the DTC pin

Soft start operation can be set by connecting a capacitor to the DTC pin. Setting the STBY pin to high will cause the capacitor connected to the DTC pin to be charged by the internal pull-up resistor. Startup will begin when this voltage reaches the minimum voltage of the CT pin's triangular waveform.

Startup will begin when this voltage reaches the minimum voltage of the CT pin's triangular wavefor *Set the capacitance connected to each DTC pin to 10 µF or less.

 12. Internal soft start operation Soft start times are set internally for CH4, CH6, and CH7 (BD9739KN); and CH2 to CH4 (BD9740KN). BD9739KN CH4, 6, 7: 2.7 ms BD9740KN CH2 to CH4: 3.6 ms (Soft start operation of CH2 and CH3 is delayed until CH4 reaches approximately 80%.)

- 13. Setting the error amp feedback resistance
 - (1) Feedback resistance order (BD9739KN, BD9740KN)
 - Error amp differential input is formed by a PNP transistor, with the base current of this input flowing into the lower voltage divider resistor. In the worst case, this current may reach 0.2 μ A. For this reason, when the resistance of the lower resistor is increased, the base current may cause an error in the output voltage. For example, resistance values of 40 k Ω , 20 k Ω , and 10 k Ω result in errors of 1%, 0.5%, and 0.25%, respectively. Refer to these values when setting the resistance value.
 - (2) Setting the inverted channel (BD9739KN, BD9740KN)

For the BD9739KN, connect the CH5 error amp reference voltage (INV5) to the ground. For the BD9740KN, the CH6 error amp reference voltage is grounded internally. *It is recommended to use a 10 k Ω resistor between VREF and CH5 output. Use a resistance value from 5 k Ω to 20 k Ω .

●I/O Equivalent circuit diagrams

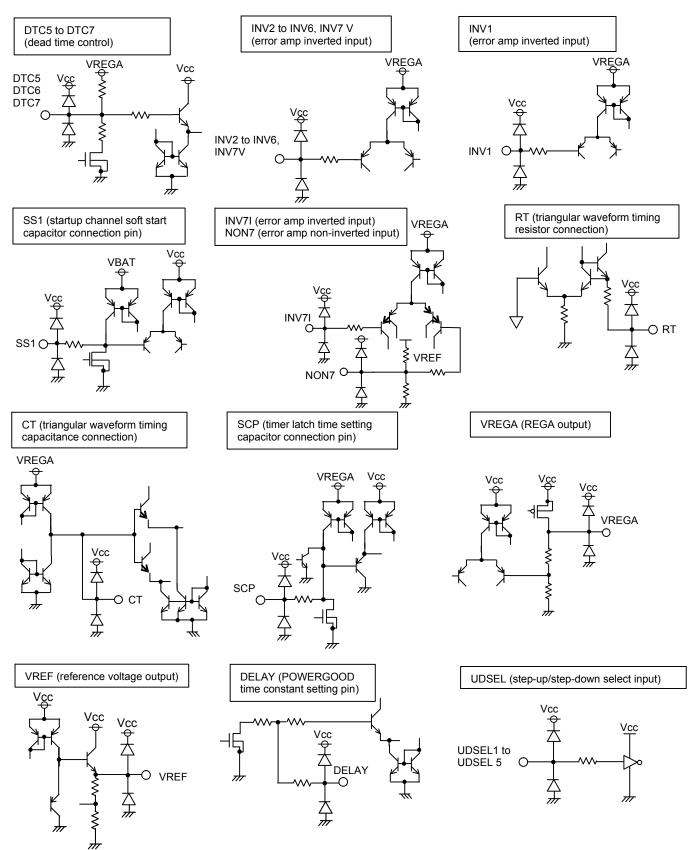


Fig. 9 I/O Equivalent Circuit Diagrams (1)

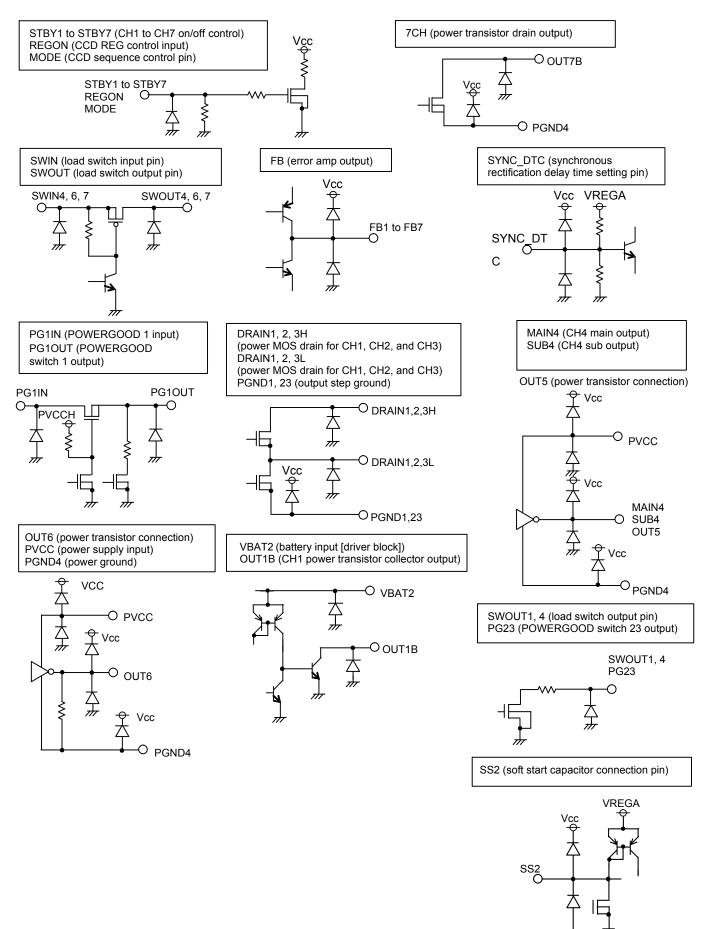


Fig. 10 I/O Equivalent Circuit Diagrams (2)

Notes for use

1) Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2) Reverse polarity connection of the power supply

Connecting the of power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.

3) Power supply lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, note that capacitance characteristic values are reduced at low temperatures.

4) GND voltage

Ground-GND potential should maintain at the minimum ground voltage level. Furthermore, no terminals should be lower than the GND potential voltage including an electric transients.

- 5) Thermal design Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
- 6) Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines.

- Operation in a strong electromagnetic field Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
- 8) ASO

When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.

9) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

- 10) Capacitors connected between output and ground pins If a large capacitance value is connected between the output and ground pins, and if the VCC falls to 0 V or becomes shorted with the ground pin, the current stored in the capacitor may flow to the output pin. This can cause damage to the IC. Set capacitors connected between the output and ground pins to values that fall within the recommended range.
- 11) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

12) Regarding input pin of the IC (Fig 11)

This monolithic IC contains P^+ isolation and P substrate layers between adjacent elements to keep them isolated. P–N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A and GND > Pin B, the P–N junction operates as a parasitic diode.

When Pin B > GND > Pin A, the P–N junction operates as a parasitic transistor.

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

13) Ground wiring patterns

The power supply and ground lines must be as short and thick as possible to reduce line impedance. Fluctuating voltage on the power ground line may damage the device.

14) STB pin voltage

Set the STB pin voltage to 0.3 V or lower when setting channels to a standby state, or to 2.0 V or higher when setting channels to an operational state. Do not lengthen transition times or fix the STB pin voltage to values higher than 0.3 V or lower than 2.0 V. Doing so may cause the IC to malfunction.

15) Common supply voltage

Use a common supply voltage for both the driver block and the main block. The IC is not compatible with applications requiring the driver block to be used while applying user-selected voltages.

16) Setting the MAX DUTY

MAX DUTY limitations may not operate when using the IC at high frequencies. When using the IC in such applications, allow for sufficient margins when setting external components.

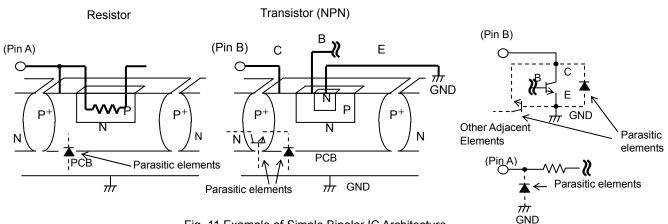
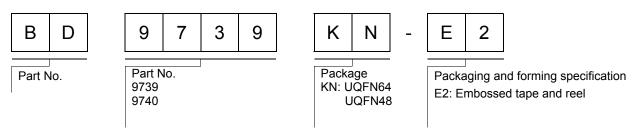
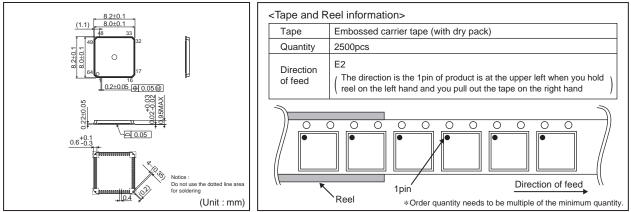
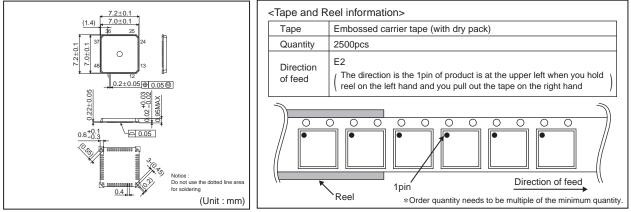




Fig. 11 Example of Simple Bipolar IC Architecture


Ordering part number

UQFN64

UQFN48

	copying or reproduction of this document, in part or in whole, is permitted without the nsent of ROHM Co.,Ltd.
The	e content specified herein is subject to change for improvement without notice.
"Pr	e content specified herein is for the purpose of introducing ROHM's products (hereinafte oducts"). If you wish to use any such Product, please be sure to refer to the specifications ich can be obtained from ROHM upon request.
illu	amples of application circuits, circuit constants and any other information contained herein strate the standard usage and operations of the Products. The peripheral conditions mus taken into account when designing circuits for mass production.
Ho	eat care was taken in ensuring the accuracy of the information specified in this document wever, should you incur any damage arising from any inaccuracy or misprint of such prmation, ROHM shall bear no responsibility for such damage.
exa imp oth	e technical information specified herein is intended only to show the typical functions of an amples of application circuits for the Products. ROHM does not grant you, explicitly o plicitly, any license to use or exercise intellectual property or other rights held by ROHM and er parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the e of such technical information.
equ	e Products specified in this document are intended to be used with general-use electronic upment or devices (such as audio visual equipment, office-automation equipment, commu ation devices, electronic appliances and amusement devices).
The	e Products specified in this document are not designed to be radiation tolerant.
	ile ROHM always makes efforts to enhance the quality and reliability of its Products, a oduct may fail or malfunction for a variety of reasons.
aga fail sha	ase be sure to implement in your equipment using the Products safety measures to guard ainst the possibility of physical injury, fire or any other damage caused in the event of the ure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM all bear no responsibility whatsoever for your use of any Product outside of the prescribed ope or not in accordance with the instruction manual.
sys ma ins cor of	e Products are not designed or manufactured to be used with any equipment, device o stem which requires an extremely high level of reliability the failure or malfunction of which y result in a direct threat to human life or create a risk of human injury (such as a medica trument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- ntroller or other safety device). ROHM shall bear no responsibility in any way for use of any the Products for the above special purposes. If a Product is intended to be used for any ch special purpose, please contact a ROHM sales representative before purchasing.
be	rou intend to export or ship overseas any Product or technology specified herein that may controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to tain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/